Pulsed laser deposition vs. matrix assisted pulsed laser evaporation for growth of biodegradable polymer thin films
ثبت نشده
چکیده
Thin films of poly (lactide-co-glycolide) (PLGA), a biodegradable polymer, were deposited on Si wafers by both conventional pulsed laser deposition (PLD) and matrix assisted pulsed laser evaporation (MAPLE) using chloroform (CHCl3) as a matrix solvent. This research represents an initial study to investigate the deposition characteristics of each technique at comparable conditions to gain insight into the transport and degradation mechanisms of each approach. The deposited materials were characterized by scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), proton nuclear magnetic resonance (1H NMR), and gel permeation chromatography (GPC) with refractive index (RI) detection. While FTIR and NMR results do not show a measurable departure from the native, in sharp contrast GPC results show a significant change (up to 95%) in molecular weight for both deposition methods. This result makes it clear that it is possible to overlook substantial degradation when incomplete chemical analysis is conducted. Optical transmission measurements of the starting MAPLE targets yielded laser penetration depths on the order of 0.362 cm and 0.209 cm for pure CHCl3 and 1 wt.% PLGA in CHCl3, respectively. Straightforward application of the Beer–Lambert law for laser energy deposition predicts a negligible temperature rise of less than 1 K at the target surface, which is in clear contradiction with ablation rates of 1.85 μm/pulse experimentally measured for polymer loaded samples. With an ablation process of this magnitude, the material ejection is likely due to contributions of nonlinear or non-homogeneous laser light absorption rather than evaporation. Severe non-uniformity of the final surface morphologies of the MAPLE films, similar to solvent wicking artifacts found in spin casting supports the spallation scenario in MAPLE. PACS 81.15.Fg; 79.20.Ds; 78.66.Qn; 42.70Jk
منابع مشابه
Optically active Er–Yb doped glass films prepared by pulsed laser deposition
Related Articles Laser ablation and deposition of aluminium with a specially configured target-substrate arrangement J. Appl. Phys. 113, 026102 (2013) Charge localization at the interface between La1−xSrxMnO3 and the “infinite layers” cuprate CaCuO2 J. Appl. Phys. 112, 123901 (2012) Resonant photoemission study of epitaxial La0.7Sr0.3MnO3 thin film across Curie temperature Appl. Phys. Lett. 101...
متن کاملPulsed laser deposition of liquid crystals
Related Articles Charge localization at the interface between La1−xSrxMnO3 and the “infinite layers” cuprate CaCuO2 J. Appl. Phys. 112, 123901 (2012) Resonant photoemission study of epitaxial La0.7Sr0.3MnO3 thin film across Curie temperature Appl. Phys. Lett. 101, 242402 (2012) Physical properties of CdTe:Cu films grown at low temperature by pulsed laser deposition J. Appl. Phys. 112, 113110 (2...
متن کاملLaser processing of polymer nanocomposite thin films
Current biotechnology and sensor research has enhanced the drive to establish viable methods for depositing high-quality polymer thin films. In this research, thin films of poly methyl methacrylate PMMA were prepared by matrix-assisted pulsed-laser evaporation MAPLE . Up to 2 wt % of carbon nanotubes were subsequently added to MAPLE target systems for deposition of polymer nanocomposite films. ...
متن کاملThe minimum amount of "matrix" needed for matrix-assisted pulsed laser deposition of biomolecules.
The ability of matrix-assisted pulsed laser evaporation (MAPLE) technique to transfer and deposit high-quality thin organic, bioorganic, and composite films with minimum chemical modification of the target material has been utilized in numerous applications. One of the outstanding problems in MAPLE film deposition, however, is the presence of residual solvent (matrix) codeposited with the polym...
متن کاملDeposition of Nanotubes and Nanotube Composites using Matrix-Assisted Pulsed Laser Evaporation
Using the Matrix-Assisted Pulsed Laser Evaporation (MAPLE) process developed at the Naval Research Laboratory, carbon nanotubes and carbon nanotube composite thin films have been successfully fabricated. This process involves dissolving or suspending the film material in a volatile solvent, freezing the mixture to create a solid target, and using a low fluence pulsed laser to evaporate the targ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2005